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Al~traet--This paper investigates the possible effect of grain size distribution on the rheological behavior of 
polycrystalline materials, specifically on the stress exponent n, activation energy Q, and grain size exponent p in 
the steady-state deformation. All grains in a specimen are assumed to deform simultaneously by power-law creep 
and grain boundary diffusion (Coble) creep. It is shown that the overall values of n, Q and p are affected by the 
sizes of grains and their volume fractions in the specimen. In the case that grains of different sizes deform at the 
same stress, but at different rates, a small number of fine grains in a coarse polycrystal may initiate an overall 
Newtonian creep behavior. In the case that grains of different sizes deform at the same strain rate, but support 
different stresses, a small number of coarse grains in a fine polycrystal may induce an overall power-law creep 
behavior. When a diverse grain size distribution exists, but only the average grain size is considered, the 
conclusion about the dominant mechanism operating is misleading. Care should be taken when inferring the 
overall deformational behavior of rocks containing grains of widely differing sizes based on the microstructures 
preserved. 

INTRODUCTION 

FoR single-phase polycrystalline materials deformed at 
high temperatures,  the steady-state creep rate is often 
described by (e.g. Chokshi & Langdon 1991) 

= Aa  n d -p exp Q (1) 
RT'  

where k is the normal strain rate, o is the normal stress, d 
is grain size, Tis temperature,  R is the gas constant, A is 
the material constant, n is the stress exponent,  p is the 
grain size exponent  and Q is the activation energy for 
creep. The creep parameters,  n, p and Q may be derived 
from equation (1) as: 

at constant T and d, n - . (2) 
e 3o 

d Ok 
at constant T and o, P = ~ Od (3) 

at constant a and d, Q = 1. _ _ ° ~  (4) 

and determined from experimental data. The experi- 
mentally determined n ,p  and Q may be used to infer the 
operating deformation mechanism(s). Theoretically, for 
dislocation creep, p = 0, Q = Qv, the activation energy 
for lattice diffusion, and n = 3-5 (power-law creep) or n 
= 1 (Harper -Dorn  creep). For diffusional creep, how- 
ever, n = 1, Q = Qv and p = 2 in the case of lattice 
diffusional (Nabarro-Herr ing)  creep, but Q = Qb, the 
activation energy for grain boundary diffusion, and 
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p = 3 in the case of grain boundary diffusional (Coble) 
creep. For grain boundary sliding creep, generally, 
n = 1 -  2, Q = Qb - Qv and p = 1 -  3. Dislocation 
creep does not depend on grain size, but diffusional and 
grain boundary sliding creep are sensitive to grain size. 
See Poirier (1985) and Chokshi & Langdon (1991) for an 
exhaustive review of creep mechanisms. 

These specific values of n, Q and p have theoretical 
validity when only one creep mechanism is operative. In 
other words, all constituent grains in the material de- 
form by an identical mechanism. To meet this require- 
ment at a given temperature and stress, the grain size 
must be: (1) very large or very small so that any indi- 
vidual grain deforms by only one mechanism (dislo- 
cation glide or climb creep for the case of very large grain 
size, diffusional or sliding creep for the case of very small 
grain size); and (2) be sufficiently uniform over the 
whole specimen so that all grains deform by the same 
mechanism. 

Such a strict requirement is scarcely met in real 
polycrystalline materials. The grain sizes in metals, 
ceramics and rocks are often not uniform, but vary from 
grain to grain. Besides, grain sizes may also change 
during deformation (e.g. by dynamic recrystallization or 
grain growth). In these cases, more than one mechanism 
(grain size sensitive and insensitive) may operate in 
individual grains, or different mechanisms in different 
grains, or both. With the presence or development of 
grain size distribution in the material, the observed 
rheological behavior may be significantly different from 
the theoretical prediction for a single-valued grain size. 

Effects of grain size distribution on deformation have 
been considered to account for the wide strain-rate 
transition (over several orders of magnitude) from 
power-law creep to diffusional creep (Raj & Ghosh 
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1981), to simulate the steady-state, loading and load 
relaxation behaviors of superplasticity (Ghosh & Raj 
1981), to explain the oscillating shape of the stress-strain 
curves of aluminium alloys during superplastic defor- 
mation (Ghosh & Raj 1986). Freeman & Ferguson 
(1986) studied the effect of grain size distribution using 
deformation mechanism maps. They illustrated that at a 
given average grain size, the stress and temperature 
ranges in which one creep mechanism is dominant over 
others change with a change in grain size distribution. 
However, they did not show how, with changing grain 
size distribution, the creep parameters might change, 
whether or under what conditions there could be a 
switch from power-law creep to diffusional creep or vice 
versa, or what would be the microstructural evidence for 
such switching. The specific purpose of this paper is to 
seek possible answers to these questions. 

By considering a material deforming in part by a grain- 
size sensitive process, it will be shown that the overall 
values of n, Q and p are affected by the sizes of grains 
and their volume fractions in the specimen. In the case 
that grains of different sizes deform at the same stress, 
but at different strain rates, a small number of fine grains 
in a coarse polycrystal may initiate an overall linear 
creep behavior. In the ease that grains of different sizes 
deform at the same strain rate, but support different 
stresses, a small number of coarse grains in a fine 
polycrystal may induce an overall power-law creep be- 
havior. These results have important implications for 
interpreting the experimentally determined creep para- 
meters and for inferring aggregate properties from ob- 
servations of deformation microstructures. 

M O D E L S  

To illustrate the effect of grain size distribution, only 
power-law creep and Coble creep are chosen for the 
investigation here (Nabarro-Herring creep, or grain 
boundary sliding, or pressure-solution creep can be 
similarly combined with power-law creep). The coupling 
of Coble creep with power-law creep will be studied for 
two cases: 

(1) the grain size is single-valued, and thus has a 
unimodal distribution; 

(2) the grain size is multiple-valued, and thus has a 
diverse distribution. 

Unimodal grain size distribution 

In an ideal single phase material with a unimodal grain 
size distribution, all grains have the same size d, and 
hence deform by the same mechanism(s). Two questions 
may be posed: under what conditions will more than one 
mechanism operate simultaneously and what effect will 
this have on the values of n, p and Q? 

For convenience, by simplifying equation (1), rate 
equations for power-law creep and Coble creep are 
expressed as: 

ep = Ap a % exp - Q__z (5) 
R T  

a Qb 
ea = Ad--~ exp RT'  (6) 

respectively, where no is the stress exponent for power- 
law creep, and Ap and Ad are pre-exponential factors. 

When power-law creep and Coble creep operate con- 
comitantly, the overall strain rate of each grain is the 
summation of equations (5) and (6): 

=ep + ed (7) 

as they are two independent and thus additive mechan- 
isms (Frost & Ashby 1982). The relative contributions of 
kp and ed to k depends on the grain size. 

A critical size d c can be found by equating (5) and (6) 
a s :  

= - -  (8) 
( kp j 

with Edd = Ad a exp ( - Q b / R T ) .  At this size, power-law 
creep and Coble creep contribute equally to the overall 
strain rate. At a size d > de, power-law creep dominates, 
whereas at a size d < dc, Coble creep dominates, d can 
be related to dc by: 

d = udc, (9) 

where u is a constant describing the deviation of d from 
d .  

Suppose the ratio of the strain rate of diffusional creep 
to the total strain rate is ¢p, then 

(1 - ~ )  k = kp (10) 

q~ e = ed. (11) 

By combining equations (2)-(4) and (5)-(11), the fol- 
lowing relations can be derived: 

n = (12) 

Q = Qvep + Qbed (13) 

3kd 
p - . (14) 

Ep -~- ~ d 

~b= . ia (15) 
6p -~- ~d" 

For numerical calculations, the power-law creep para- 
meters and diffusion coefficients for pure nickel are 
selected and listed in Table I (the following calculations 
can be made for any other crystalline materials). Com- 
putation is performed at a temperature of 1100 K and 
stress of 10 MPa. The variation of q~, n, Q and p with u 
are discussed as follows. 

The variation of ~ with grain-size is shown in Fig. 1. 
By definition when u = 1 (d = d~), then q~ = 50% 
(equation 8). In this case, dislocation and Coble creep 
contribute equally, and the overall stress exponent, 



Effect of grain size distribution on theology 

Table 1. Material data used for equations (5) and (6) (after Frost & Ashby 1982) 

Temp o At, Qv Ad Qb 
Material (K) (MPa) (MPa)-no s -1 n o (kJ mol) - l  (MPa -1 m 3 s -1) (kJ tool) -1 

Pure Ni 1100 10 78.0 4.6 284.0 1.24 x 10 - l l  115 
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Fig. 1. Variation of the ratio of  the diffusional creep rate to the total 
creep rate for each grain with the deviation of grain size from d~. 
u = 1.0 (C), ~ = 50%, power-law creep and diffusional creep contrib- 
ute equally; u > 2.8 (D),  @ < 5%, less than 5% of the total creep rate is 
contributed by diffusional creep; u < 0.4 (B), @ > 95%, more than 

95% of the total creep rate is contributed by diffusional creep. 

5- 
,¢" no = 4 ' 6  A 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Fig. 2. Variation of stress exponent  with the deviation of grain size d 
from d e. u = 1.0 (B), n = 2.8; u > 2.8 (D), n > 4.4, close to n o = 4.6 
for power-law creep; u < 0.4 (C), n < 1.2, close to unity for diffusional 

creep. 

activation energy and grain size exponent are 2.8 (Fig. 
2), 200 kJ tool -I and 1.5, respectively. When u > 1, 

< 50%, power-law creep dominates over Coble creep. 
For u > 2.8, @ < 5%, power-law creep acts almost 
solely, and thus n, Q and p approach no (Fig. 2), Qv and 
zero. When u < 1, ~ > 50%, Coble creep dominates 
over power-law creep. For u < 0.4, @ > 95%, Coble 
creep operates almost exclusively, and thus n, Q and p 
approach 1 (Fig. 2), Qb and 3. 

Thus, it follows that if the size of a grain is around the 

v 

.o.: 

f2 

g 

d = fl d2 + f2 d2 

d2 dl 

Grain size 

Fig. 3. Schematic diagram showing bimodal grain size distribution 
with two modal values d I and dE, and an average size d. 

critical size d c at ,a given temperature and stress, the 
grain deforms by more than one mechanism, and the 
overall n, Q and p could have values intermediate 
between those for the individual mechanisms. 

Bimodal grain size distribution 

Suppose the grain size distribution in a single phase 
polycrystal is not unimodal, but bimodal (Fig. 3) with d 1 
and d E being the two modal values (d 1 > dE) (the follow- 
ing discussions can be easily extended to distributions of 
higher orders). The volume fractions of grains with size 
d 1 (group 1) and of those with size d 2 (group 2) are 
represented by ft and f2, respectively. Then the grain 
size distribution is determined by dl, dE, fl and f2. The 
grains of the two groups support stresses of ol and o2, 
and deform at strain rates of ~1 and ~2, respectively. 

According to equations (5), (6) and (7), the strain rate 
equations for the two groups can be expressed by: 

~1 -~" ~pl "[- ~dl = Ap(r~,,exp - Q v +  Aa_~3exp Qb 
R T  dl R T  

(16) 

E2 -~ kp2 "~- Ed2 = ApO~° exp - Qv + A d ~3 exp Qb 
R T  d 2 R T  

(17) 

which can be simplified to the form of equation (1) 

el = AltT'~dl p~ exp - Q___LI (18) 
R T  

e2 = A2o']~d2 p2 exp - Q__2_2 (19) 
R T  

where Ai, ni, Pi and Qi (i = 1 or 2) are the pre- 
exponential factor, stress exponent, grain size exponent 
and activation energy for the creep of group 1 and group 
2, respectively. The overall strain rate equation is ex- 
pressed by equation (1). 

The grain sizes dl of group 1 and d2 of group 2 are 
related to dc by: 
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d 1 = id c (20) 

d2 = jdc (21) 

with i and j being two constants determining the devi- 
ation of d 1 and d 2 from dc. The average grain size d of the 
whole material is expressed as: 

d = kd~ + 5d2.  (22) 

For convenience, f2 is equated wi thfandf l  with (l-f) in 
which 

(u - i) (23) 

with u determining the deviation of the average grain 
size from dc as in equation (9). 

The real relationships between the overall strain rate 
and El, E2 and between the overall stress 0- and o-a, 02 
depend not only on the volume fractions fl and f2, but 
also on the real morphologies (Raj & Ghosh 1981) and 
the spatial distribution of group 1 and group 2 grains. 
That is, the distribution of the two groups of differing 
grain sizes through the aggregate (e.g. their continuity 
or contiguity) also influences their loading configuration 
and hence the partitioning of the stress and strain be- 
tween them (Freeman & Ferguson 1986). If a full precise 
solution were required, it would be necessary to carry 
out finite element calculations as made by Jinoch et al. 
(1978) and Tullis et al. (1991). Such a solution is so 
complicated that it would obscure the problem at hand. 
However, simple geometrical and morphological con- 
siderations can provide approximate solutions. 

Uniform stress model .  If the two groups of different 
grain size are assumed to be arranged in a series manner, 
then 

= f l ~ l  + f2~2 (24) 

0- = 0-1 ":" 0-2" (25) 

In this case, grains of different sizes deform at different 
strain rates, but support the same stress as does the 
overall specimen; a uniform stress is assumed. By com- 
bining equations of (2)-(4), (16), (17), (24) and (25), the 
following relations can be obtained: 

n = n°kp + fl~dl "{- f2~d2 (26) 
~p q- fl~dl "k f2~d2 

O = Ovke + Qwflkdl + Obf2ea2 (27) 
ep + flea, + f2ed2 

p = 3 fl~dl + f2~d2 (28) 
gp q- fl~dl + f2kd2" 

Uniform strain rate model .  If the two groups are 
assumed to be arranged in a parallel manner, then 

-----El = k2 (29) 

0- = fl0-1 + f20"2 • (30) 

In this case, grains of different sizes deform at the same 

Table 2. Bimodal grain size distribution details 
designed for numerical calculations 

d 1 = i d c d2 = j dc Group 1 Group 2 
i j ~pl/el kd2/e 2 

Case 1 5.0 1.0-2.5 >95% 50-7% 
Case 2 5.0 0.1--0.8 >95% 95--65% 
Case 3 1.4 0.1-1.3 ~75% 95--40% 
Case 4 0.5 0.1-0.4 ~5% >95% 

strain rate as does the overall specimen, but support 
different stresses; a uniform strain (rate) is assumed. An 
iterative method needs to be applied for actual compu- 
tation. 

Two expressions for n can be found from equations 
(2), (16)-(19) which contain the derivatives of 0Ol/0O 
and 00-2/a0-, respectively. Another equation containing 
these two derivatives can be obtained from equation 
(30). An expression for n can thus be established as 

= 0-nln2 (31) 
n f10-1n2+fz0-2n I . 

Two expressions for Q can be found from (4), (18)- 
(21) which contain the derivatives of 00-1/0 ( - I / R T )  and 
00-z/O ( - I / R T ) ,  respectively. Another equation contain- 
ing these two derivatives can be obtained from equation 
(30). An expression for Q can thus be found as 

- 7 - 7 S  ' O2/ 0(-- 

where 

O0-2 

+ ÷ ' )  

(32) 

_ (Qveel + Qbeal) -- (Qvet, z + Qbea2) (no I 
~p2 + + + 02/  -~1~1 epl 01/  

Similar procedures can be applied to find an expression 
for p. Due to its complexity, it is not included here. 

RESULTS 

With reference to Fig. 1, and according to the contri- 
bution of power-law creep and diffusional creep to the 
total rate of one group, four distinct cases are considered 
(Table 2). In case 1 (i = 5, j = 1-2.5), grains of both 
groups deform mainly by power-law creep. In case 2 (i = 
5, j = 0.1-0.8), grains of group 1 deform mainly by 
power-law creep, but grains of group 2 mainly by dif- 
fusional creep. In case 3 (i = 1.4, j = 0.1-0.8), grains of 
group 1 deform partly by power-law creep and partly by 
diffusional creep, while grains of group 2 mainly by 
diffusional creep. In case 4 (i = 0.5, j = 0.1-0.4), grains 
of both groups deform mainly by diffusional creep. 
Focus will be placed on case 2. Pure nickel is taken as the 
material for numerical calculations. 
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Fig. 4. Uniform stress model: variation of stress exponent n with the 
volume fraction f of smaller grains at i -= 5 ,  / = 0 . 1 - 2 . 5 .  
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Fig. 6. Uniform stress model: variation of stress exponent n with the 
volume fraction f of smaller grains at i = 0.55, j = 0. I-0.4. 
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Fig. 5. Uniform stress model: variation of stress exponent n with the 
volume fraction f of smaller grains at i = 1 . 4 ,  j = 0 . 1 - 0 . 8 .  

For the uniform stress model 

Results for the uniform stress model are presented in 
Figs. 4-8. In these figures, it is clearly shown that the 
overall n, Q and p depend strongly on the grain size 
distribution (the sizes and volume fractions of the two 
groups). The following points need be noted. 

(1) At constant i and f, but variable j. When the size of 
big grains of group 1 and the volume fraction of small 
grains of group 2 are given, rheological parameters are 
affected by the size of the small grains. A s j  increases, n 
and Q also increase, but p decreases. For example, at 
i = 5  and f = 4 0 % ,  for j = 0 . 4 - 0 . 6 ,  n = 1 . 2 5 - 2 . 1 5  
(A ---, B, Fig. 4); Q = 140-175 kJ mol-  t (C ~ D,  Fig. 7); 
p = 2.7-1.95 (E ---, F, Fig. 8). This is because as the size 
of small grains increases, the contribution of Coble 
creep to the overall creep decreases. 

(2) At constant i, j, but variable f. When the sizes of the 
grains of both groups are given, the rheoiogical para- 
meters are affected by the volume fraction of the small 
grains. As fincreases from 0 to 100%, n and Q decrease, 
but p increases. This is because, as the fraction of small 
grains increases, the contribution of Coble creep to the 
overall creep increases. 

300" 

ZSO 

z00" 

I SO" 

100" 

i 
Uniform Stress' Model 

0 ZO 40 60 80 1 O0 

Volume fraction fof  smaller grains (%)  

Fig. 7. Uni form stress model: variation of activation energy O with 
the volume f r a c t i o n / o f  smaller grains at i = 5 ,  j = 0 .  I - 2 . 5 .  

3- 

i 2. S 

0.  ~ ~  

_Uniform Stress Model 

~ . ~ 1  ~ ,...~ O, 6 

0 ZO 40 60 80 100 

Volume fraction f of smaller grains (%) 

Fig. 8. Uniform stress model: variation of grain size exponent p with 
the volume fraction of smaller grains at i = 5 ,  j = 0 . 1 - 2 . 5 .  

(3) At constant j and f, but variable i. When the size 
and volume fraction of grains of group 2 are given, the 
rheological parameters are affected by the size of grains 
of group 1. As iincreases from 0.5 to 5, n and Q increase, 
but p decreases. This is because, as the size of big grains 
increases, the contribution of Coble creep to the overall 
creep decreases. 
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Fig. 9. Uniform stress model: comparison in variation of stress ex- 
ponent n with the deviation u of the average grain size d from d~ 
between unimodal (dotted) and bimodal (fine lines) at i = 5, j = 0.1- 

0.8 size distributions. 

(4) In different cases of  grain size distribution (Table 
2), the ranges in which the overall creep parameters vary 
are different. In case 1, where dl and de > dc (i = 5, 
j = 1-2.5), they vary between those for pure power-law 
creep and about  half of each of these values (Figs. 4, 7 
and 8). The slight deviation from pure power-law creep 
is due to the minor contribution of Coble creep to the 
total strain rate as the size of  the smaller grains de- 
creases. In case 4, where di and de < d c  (i = 0.5,j  = O. 1- 
0.4), the creep parameters  vary within only limited 
ranges which are close to those for pure Coble creep 
(Fig. 6). This is because grains of both groups deform 
mainly by Coble creep. The minor contribution of power 
law creep causes the overall behavior  to deviate slightly 
from that of  pure Coble creep. In case 3 (i = 1.4,j  = 0.1-  
0.8), a pure power-law creep behavior cannot be 
approached because of the operation of Coble creep also 
in grains of group 1 with larger grain sizes (Fig. 5). 
However ,  in case 2 where d 1 > de, but dl > dc (i = 5, 
j = 0.1-O.8), n, p and Q could have any values between 
those for pure power-law creep and those for pure Coble 
creep depending on the detail of grain size distribution 
(Figs. 4, 7 and 8). 

Variation of n with the deviation of the average grain 
size d from d c (at i = 5, j = 0.1-0.8) is presented in Fig. 
9. Such a variation in the case that the grain size 
distribution is unimodal,  as presented in Fig. 2, is super- 
posed. In the unimodal case (represented by circles) 
where all grains have the same size, n varies with u only. 
But in the bimodal case (represented by fine lines) where 
the average grain size is determined by the sizes of the 
two groups and their volume fractions (equation 22), n 
varies not only with u, but also with j at constant i. The 
larger the j and u, the larger the n. Only at specific j 
values (e.g. at j = 0.5 when u = 0.5, point G in Fig. 9), 
can n in the unimodal case be identical to those in the 
bimodal case. 

A specific case of interest is discussed in detail. Group  
1 is supposed to deform by power-law creep only, and 
group 2 by diffusion creep only. With reference to Fig. 1, 
this is true for i > 2.8 and j < 0.4. i = 5 and j = 0.3 are 
selected. 

s . 0  i i ] " I " 

. - - & l  

4.0 

3 . 5  

• \ 
3.0 _ \ 

z.s i i-  
. U n i f o r m  S t r a i n  Model 

2.oi , 1 J I 
~o zo 3o 40 5o Go 7o 8o 

Volume fraction of srnaller grains (%) 

Fig. 10. Uniform strain model: variation of stress exponent n with the 
volume fraction of smaller grains at i = 5. j = 0.1-0.8. 

Under  this condition, n, Q and p vary wi thfonly ;  that 
is, they are determined by the volume fractions of group 
1 and group 2 only. When f =  16%, n = 1.5 (point H in 
Fig. 4), Q = 140 kJ mo1-1 (point I in Fig. 7), a n d p  = 2.6 
(point J in Fig. 8), respectively, which are close to 1115 
kJ m o l -  1 and 3 for pure diffusion creep. This means that 
at 1100 K and 10 MPa stress, a pure nickel polycrystal 
will deform dominantly by diffusion (Coble) creep if 
84% of the grains are of a size d l =  5 dc = 174.25/~m and 
16% are of a size d2 = 0.3 d c =  10.46/~m. Obviously 
here, most of the grains are very coarse and only a very 
small number  of grains are very fine. But such a poly- 
crystal shows diffusional creep behavior rather than 
power-law creep behavior! 

However ,  if the bimodal grain size distribution is not 
taken into account and only the average grain size d is 
considered, the conclusion will be different. When 
fl  = 84%, i = 5 and f2 = 16%, j  = 0.3, the average grain 
size d = 148.04 /~m (equation 22), corresponding to 
u = 4.25, the deviation of d from d c (equation 9). If  the 
grain size distribution of the polycrystal is considered as 
unimodal,  then, n ~ 4.5, Q ~ 280 kJ tool - i  andp  ~- 0.02 
(calculated from equations 12-14), which are very close 
to no = 4.6, Qv = 284 kJ mo1-1 a n d p  = 0, respectively, 
for pure power-law creep. That  is, if all grains are 
assumed to have an identical size d, the polycrystal is 
expected to show power-law creep behavior rather than 
diffusional creep behavior. 

Therefore ,  a small number  of fine grains in an overall 
coarse polycrystal influences the deformation behavior 
dramatically for the uniform stress case. Neglecting to 
consider the grain size distribution would lead to errone- 
ous conclusions about the dominating deformation 
mechanism. 

For the uniform strain model 

Results for the uniform strain (rate) model are shown 
in Figs. 10 and 11. Calculations are made only at i = 5, 
y = 0 . 1 - 0 . 8 .  

In such a uniform strain case, the bulk n, Q and p 
values are much less sensitive to changes in the volume 
fraction f a n d  the size d2 of the smaller grains than in the 
uniform stress case. It appears  that the smaller the size of 
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Fig. 11. Uniform strain model: variation of activation energy Q with 
the volume fraction of smaller grains at i = 5, j = 0.1-0.5. 

the small grains, the less sensitive they are to changes i n f  
and d2. For example, at i = 5 and j = 0.1, when the 
volume fraction of the small grains is 75%, n = 2.8 (Fig. 
10), Q = 200 kJ mo1-1 (Fig. 11). This means that for the 
uniform strain model,  a pure Ni polycrystal composed of 
mainly very small grains will show power-law creep 
behavior rather than diffusionai creep behavior. 

DISCUSSION 

The important feature of the above results is that the 
overall rheological behavior of a polycrystalline solid is 
affected by grain size distribution (the size of grains in 
each group and their volume fractions). The effect is 
most prominent when the smaller grains in the material 
deform mainly or completely by a grain size sensitive 
process such as diffusional creep, while large grains 
deform by a grain size insensitive process such as power- 
law dislocation creep. Under  this circumstance, a small 
number of fine grains may invoke an overall diffusional 
creep behavior if the distribution of stress is uniform 
between grains of different sizes, but a small number of 
coarse grains may prompt an overall power-law creep 
behavior if the distribution of strain in the material is 
uniform. 

The cause for the above observations is that in the 
uniform stress case, because all grains are assumed to 
support the same stress as the whole material, the 
smaller grains deform at a strain rate faster, but the 
larger ones deform at a strain rate much smaller, than 
that the bulk specimen (Fig. 12). As the size of the small 
grains becomes smaller and smaller, their contribution 
in the form of diffusion creep becomes larger and larger. 
However ,  the contribution by the big grains in the form 
of power-law creep remains unchanged. The conse- 
quence is that smaller and smaller numbers of fine grains 
are required to induce an overall diffusion creep behav- 
ior. Hence a small number of fine grains can invoke an 
overall behavior similar to that of diffusional creep. 

By contrast, in the uniform strain rate case, because 
all grains are assumed to deform at the same strain rate 
as the whole specimen, the stress supported by big grains 
01 must be much larger than that supported by small 
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Fig. 12. Dependence of the specimen strain rate and the strain rate of 
the small and large grains on the size of the small grains d~. Uniform 
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Fig. 13. Dependence of the specimen stress and the stress in the small 
and large grains on the size of the small grains. Uniform strain in a 

sample composed of 25% large grains. 

grains tr 2. As the size of the small grains decreases, 0 1 
must increase (Fig. 13) so as to increase the strain rate of 
the big grains by power-law creep. The consequence is 
that smaller and smaller numbers of big grains are 
required to produce an overall power-law creep behav- 
ior. Hence a small number  of coarse grains may cause 
the overall behavior to be similar to that of power-law 
creep. 

The uniform stress and uniform strain rate models 
represent two extreme situations of distribution of stress 
and strain rate between small and big grains in a 
material. The uniform stress models tends to overesti- 
mate the role of small grains, whereas the uniform strain 
rate model tends to overestimate the role of big ones. 
The real rheological behavior of the material with a 
diverse grain size distribution may be determined by the 
uniform stress model as the lower bound and by the 
uniform strain rate model as the upper bound. This is 
shown in Fig. 14. As the size of small grains (j) increases, 
the gap between the upper and lower bounds dimin- 
ishes. 

Which of the two models is more likely in a material 
depends on the microstructures developed during defor- 
mation. If the distribution of stress is uniform, because 
small grains deform at a strain rate faster, but big grains 
deform at a strain rate much slower, than that of the bulk 
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Fig. 15. Schematic deformation microstructures of  materials with 
grains of  widely differing sizes in which the deformation has been in 
part by a grain size sensitive mechanism. (a) The uniform stress case 
(a = cq = az). A small fraction of fine grains may induce an overall 
diffusional creep behavior. Fine grains are greatly flattened, whereas 
coarse ones show little deformation.  (b) The  uniform strain case 
(e = e I = e2). A small fraction of coarse grains may result in an overall 
power-law creep behavior. Both fine and coarse grains show equal 

flattening. 

specimen, microstructurally, fine grains are expected to 
show great flattening, whereas coarse ones are expected 
to exhibit little deformation (Fig. 15a). In contrast, if the 
distribution of strain is uniform, microstructurally, fine 
and coarse grains should show equal flattening (Fig. 
15b). 

Since grain size distributions have not been reported 
along with the rheological data in the literature, it is 
premature to make a quantitative comparison between 
experimental results and this theoretical work. Never- 
theless, a qualitative account is beneficial to interpret 
experimentally determined values of n, p and Q and to 

deduce bulk mechanical properties from microstructural 
observations for materials containing grains of distrib- 
uted sizes. 

Different creep mechanisms control the deformation 
of a material only at specific experimental conditions. 
The theoretical values of n, p and Q for a deformation 
mechanism can be experimentally observed only when 
this mechanism is operative exclusively. However, the 
observed parameters may be different from theoretical 
values for any creep models. At a given stress and 
temperature, this difference may just be a result of 
operation of more than one mechanism due to the 
presence of a diverse grain size distribution. Take grain 
boundary sliding as an example. There are wide vari- 
ations in the dependence of sliding rate on stress (gener- 
ally from 1 to 3), temperature (Q from 0.2 Qv to Qv) and 
grain size (p from 1 to 3). Various models have been 
developed to predict the experimental observations (see 
Langdon & Vastava 1982 for a review). However, all 
models and experimental measurements have ignored 
the possible presence of grain size distribution in the 
material. Since the steady state, loading and load relax- 
ation behavior and the oscillating shape of the stress- 
strain curves during superplastic deformation can be 
explained in terms of the effect of grain size distribution 
(Ghosh & Raj 1986), the various experimentally ob- 
served n, p and Q may result from the coupling of 
dislocation creep with diffusional creep in different ways 
under different conditions. According to this study, it 
appears necessary to consider whether or not there is a 
grain size distribution in the material used for studying 
grain boundary sliding. 

Dynamic recrystallization induces the development of 
a diverse grain size distribution. Grain growth increases 
the size of fine grains, but subgrain rotation reduces the 
size of relatively large grains. Therefore, there might be 
a switch in overall deformation behavior from power- 
law creep to diffusional or grain boundary sliding creep 
in the case of subgrain rotation or vice versa in the case 
of grain growth. Such a switch may occur when the 
volume fraction of the new grains is still small. Mechan- 
ical data are essential for determining whether or not 
this change occurs during experiments. 

Determination of deformation mechanism of rocks 
based on the microstructures preserved may be dubious 
if the rocks contain grains of largely different sizes. The 
reason is that the distribution of stress and/or strain 
between grains of different sizes is often not easy to 
determine• For example, if the rock consists of a large 
number of big grains which show dislocation creep, but 
only a small number of grains which show diffusional 
creep, the overall deformation behavior of the rock 
might be similar to that of diffusional creep rather than 
dislocation creep if the distribution of stress across the 
big and small grains is uniform. In contrast, if the rock 
consists of a large number of small grains, but a small 
number of big ones, the overall deformation behavior of 
the rock might be similar to that of dislocation creep 
rather than to that of diffusional creep if the distribution 
of strain across all grains is uniform. In these cases, it is 
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critical to examine whether or not the big grains have 
been deformed significantly. If they have, the distri- 
bution of strain is likely to be uniform, otherwise, the 
distribution of stress may be considered to be uniform. 

Recently, there have been a number of attempts to 
estimate the rheological behavior of two-phase aggre- 
gates in terms of the flow laws, volume proportions and 
configurations of the constituent phases (Tharp 1983, 
Jordan 1988, Handy 1990, 1994, Tullis et al. 1991). The 
results obtained here may be applicable to two-phase 
aggregates if the group of small grains and that of big 
grains are considered as two different phases: weak and 
strong, respectively. 

Handy (1990) suggested three basic classes of approxi- 
mation for polyphase aggregates. 

(1) A load-bearing framework of a strong phase with a 
relatively small volume proportion of weak phase 
(<25%); in this case, the strength of the aggregate 
approaches that of the strong phase. According to the 
present study, this is true only if the distribution of strain 
rate is uniform between the weak and strong phases, and 
thus the bulk rheology of such a structure tends to be 
closer to the uniform strain rate bound. Instead, if the 
distribution of stress is uniform, then the strength of the 
aggregate will approach that of the weak phase, and the 
bulk rheology will be closer to the uniform stress bound. 

(2) Isolated clasts of a strong phase dispersed in a 
much weaker matrix (strength contrast >10/1); in this 
case, the strength of the aggregate approaches that of 
the weak phase. This is true only if the distribution of 
stress is uniform. If the distribution of strain rate is 
uniform, then the strength of the aggregate will 
approach that of the strong phase, and the bulk rheology 
will be close to the uniform strain rate bound. 

(3) Two phases which have a relatively low strength 
contrast (<10/1), in which case both will undergo exten- 
sive flow and the strength of the aggregate will lie 
between those of the two individual phases. According 
to this study, the bulk theology will lie in the middle 
between the uniform stress and uniform strain bounds. 

It has been shown in Wang (1992) that Heavitree 
quartzite deforms at high temperatures by power-law 
creep (n = 2.4) at high stresses, and by Newtonian creep 
(n = 1) at low stresses (papers in preparation). In the 
latter case, dynamic recrystallization and melting 
occurred. Whether or not the Newtonian behavior at 
low stresses is related to the existence of a grain size 
distribution in the specimens is discussed as follows. 

Eighty percent of grains in the starting material have 
sizes between 150 and 200/~m, about 10% smaller than 
100 ktm, and the rest larger than 200/~m. During defor- 
mation, dynamic recrystallization resulted in the forma- 
tion of more small grains. Melts, often together with new 
fine grains (crystallized or recrystallized) are distributed 
mainly at triple grain junctions and at boundaries be- 
tween grains oriented parallel to the loading direction. 
Both the original and the newly formed small grains 
might deform by grain boundary diffusion and/or sliding 
creep enhanced by the presence of melts at low stresses, 
while big grains deform by power-law creep. 

According to the numerical modeling here, the over- 
all creep behavior of the specimens might be Newtonian 
if the distribution of stress across grains of all sizes is 
uniform. If this is the reason why the stress exponent n is 
lowered from 2.4 at high stresses to 1 at low stresses, 
then: 

(1) the activation energy Q should also be lowered 
from that for creep at high stresses to a value presumably 
equal to that for grain boundary diffusion; 

(2) the Q for creep of Ta buffered specimens should be 
higher than that for creep of Mn buffered specimens 
because the Ta buffered specimens contain much 
smaller fractions of recrystallized grains and melts than 
the Mn buffered ones; 

(3) bigger grains should show little deformation and 
no crystallographic preferred orientations. 

However, these are not observed. It is observed that 
the Q for power-law creep at high stresses is about the 
same as that for Newtonian creep at low stresses, and 
that the Q for Newtonian creep in the Mn buffered 
environment is the same as that for Newtonian creep in 
the Ta buffered environment. Besides, it is shown that 
bigger grains were greatly flattened during deformation 
and that c-axis preferred orientations developed. These 
experimental observations indicate that the distribution 
of stress across bigger and smaller grains are not uni- 
form, and oppose the suggestion that the Newtonian 
creep behavior at low stresses is caused by the operation 
of grain boundary diffusion and/or sliding creep 
enhanced by the presence of melt. The Newtonian 
behavior is attributed to be induced by a dislocation 
process operating in Harper-Dorn creep (Wang 
1992). 

CONCLUSIONS 

At a constant temperature and stress, the rheological 
parameters, n (stress exponent), p (grain size exponent) 
and Q (activation energy) are influenced by the grain 
size distribution in a polycrystal. If the grain size is 
single-valued, these are affected by the grain size only. 
When the grain size is so large or so small that only one 
mechanism functions, the rheological parameters are 
equal to those for the single mechanism operating. If the 
distribution is diverse, these parameters are affected by 
the sizes of grains, their volume fractions and the loading 
configuration. In the case that grains of different sizes 
deform at the same stress, but at different rates, a small 
number of fine grains in a coarse polycrystal may initiate 
an overall Newtonian creep behavior. In the case that 
grains of different sizes deform at the same strain rate, 
but support different stresses, a small number of coarse 
grains in a fine polycrystal may induce an overall power- 
law creep behavior. The wide ranges of n, Q andp values 
in the literature might be (at least partly) attributed to 
the simultaneous operation of more than one mechan- 
ism. When a wide range of grain sizes exists, but is 
neglected, any conclusion about the dominant mechan- 
ism operating would be misleading if only the average 
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grain size is considered. It is recommended that 
increased attention be given to the grain size and its 
distribution in reporting and analyzing experimental 
data. Care should be taken when using microstructures 
to infer the overall rheology of rocks containing grains of 
widely differing sizes. 
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